What is Drone Navigation? Drone navigation is the process of autonomously controlling drones to navigate and fly in different environments.
Papers and Code
Feb 27, 2025
Abstract:Multi-rotor aerial autonomous vehicles (MAVs, more widely known as "drones") have been generating increased interest in recent years due to their growing applicability in a vast and diverse range of fields (e.g., agriculture, commercial delivery, search and rescue). The sensitivity of visual-based methods to lighting conditions and occlusions had prompted growing study of navigation reliant on other modalities, such as acoustic sensing. A major concern in using drones in scale for tasks in non-controlled environments is the potential threat of adversarial attacks over their navigational systems, exposing users to mission-critical failures, security breaches, and compromised safety outcomes that can endanger operators and bystanders. While previous work shows impressive progress in acoustic-based drone localization, prior research in adversarial attacks over drone navigation only addresses visual sensing-based systems. In this work, we aim to compensate for this gap by supplying a comprehensive analysis of the effect of PGD adversarial attacks over acoustic drone localization. We furthermore develop an algorithm for adversarial perturbation recovery, capable of markedly diminishing the affect of such attacks in our setting. The code for reproducing all experiments will be released upon publication.
Via

Feb 27, 2025
Abstract:This paper proposes a holistic framework for autonomous guidance, navigation, and task distribution among multi-drone systems operating in Global Navigation Satellite System (GNSS)-denied indoor settings. We advocate for a Deep Reinforcement Learning (DRL)-based guidance mechanism, utilising the Twin Delayed Deep Deterministic Policy Gradient algorithm. To improve the efficiency of the training process, we incorporate an Artificial Potential Field (APF)-based reward structure, enabling the agent to refine its movements, thereby promoting smoother paths and enhanced obstacle avoidance in indoor contexts. Furthermore, we tackle the issue of task distribution among cooperative UAVs through a DRL-trained Graph Convolutional Network (GCN). This GCN represents the interactions between drones and tasks, facilitating dynamic and real-time task allocation that reflects the current environmental conditions and the capabilities of the drones. Such an approach fosters effective coordination and collaboration among multiple drones during search and rescue operations or other exploratory endeavours. Lastly, to ensure precise odometry in environments lacking GNSS, we employ Light Detection And Ranging Simultaneous Localisation and Mapping complemented by a depth camera to mitigate the hallway problem. This integration offers robust localisation and mapping functionalities, thereby enhancing the systems dependability in indoor navigation. The proposed multi-drone framework not only elevates individual navigation capabilities but also optimises coordinated task allocation in complex, obstacle-laden environments. Experimental evaluations conducted in a setup tailored to meet the requirements of the NATO Sapience Autonomous Cooperative Drone Competition demonstrate the efficacy of the proposed system, yielding outstanding results and culminating in a first-place finish in the 2024 Sapience competition.
* 18 Pages, 21 Figures
Via

Feb 26, 2025
Abstract:Visual SLAM is essential for mobile robots, drone navigation, and VR/AR, but traditional RGB camera systems struggle in low-light conditions, driving interest in thermal SLAM, which excels in such environments. However, thermal imaging faces challenges like low contrast, high noise, and limited large-scale annotated datasets, restricting the use of deep learning in outdoor scenarios. We present DarkSLAM, a noval deep learning-based monocular thermal SLAM system designed for large-scale localization and reconstruction in complex lighting conditions.Our approach incorporates the Efficient Channel Attention (ECA) mechanism in visual odometry and the Selective Kernel Attention (SKA) mechanism in depth estimation to enhance pose accuracy and mitigate thermal depth degradation. Additionally, the system includes thermal depth-based loop closure detection and pose optimization, ensuring robust performance in low-texture thermal scenes. Extensive outdoor experiments demonstrate that DarkSLAM significantly outperforms existing methods like SC-Sfm-Learner and Shin et al., delivering precise localization and 3D dense mapping even in challenging nighttime environments.
Via

Feb 10, 2025
Abstract:Autonomous drone navigation in dynamic environments remains a critical challenge, especially when dealing with unpredictable scenarios including fast-moving objects with rapidly changing goal positions. While traditional planners and classical optimisation methods have been extensively used to address this dynamic problem, they often face real-time, unpredictable changes that ultimately leads to sub-optimal performance in terms of adaptiveness and real-time decision making. In this work, we propose a novel motion planner, AgilePilot, based on Deep Reinforcement Learning (DRL) that is trained in dynamic conditions, coupled with real-time Computer Vision (CV) for object detections during flight. The training-to-deployment framework bridges the Sim2Real gap, leveraging sophisticated reward structures that promotes both safety and agility depending upon environment conditions. The system can rapidly adapt to changing environments, while achieving a maximum speed of 3.0 m/s in real-world scenarios. In comparison, our approach outperforms classical algorithms such as Artificial Potential Field (APF) based motion planner by 3 times, both in performance and tracking accuracy of dynamic targets by using velocity predictions while exhibiting 90% success rate in 75 conducted experiments. This work highlights the effectiveness of DRL in tackling real-time dynamic navigation challenges, offering intelligent safety and agility.
* Manuscript has been submitted to 2025 INTERNATIONAL CONFERENCE ON
UNMANNED AIRCRAFT SYSTEMS (ICUAS)
Via

Feb 09, 2025
Abstract:Vision-based object tracking is a critical component for achieving autonomous aerial navigation, particularly for obstacle avoidance. Neuromorphic Dynamic Vision Sensors (DVS) or event cameras, inspired by biological vision, offer a promising alternative to conventional frame-based cameras. These cameras can detect changes in intensity asynchronously, even in challenging lighting conditions, with a high dynamic range and resistance to motion blur. Spiking neural networks (SNNs) are increasingly used to process these event-based signals efficiently and asynchronously. Meanwhile, physics-based artificial intelligence (AI) provides a means to incorporate system-level knowledge into neural networks via physical modeling. This enhances robustness, energy efficiency, and provides symbolic explainability. In this work, we present a neuromorphic navigation framework for autonomous drone navigation. The focus is on detecting and navigating through moving gates while avoiding collisions. We use event cameras for detecting moving objects through a shallow SNN architecture in an unsupervised manner. This is combined with a lightweight energy-aware physics-guided neural network (PgNN) trained with depth inputs to predict optimal flight times, generating near-minimum energy paths. The system is implemented in the Gazebo simulator and integrates a sensor-fused vision-to-planning neuro-symbolic framework built with the Robot Operating System (ROS) middleware. This work highlights the future potential of integrating event-based vision with physics-guided planning for energy-efficient autonomous navigation, particularly for low-latency decision-making.
Via

Feb 09, 2025
Abstract:This paper investigates the application of Deep Reinforcement (DRL) Learning to address motion control challenges in drones for additive manufacturing (AM). Drone-based additive manufacturing promises flexible and autonomous material deposition in large-scale or hazardous environments. However, achieving robust real-time control of a multi-rotor aerial robot under varying payloads and potential disturbances remains challenging. Traditional controllers like PID often require frequent parameter re-tuning, limiting their applicability in dynamic scenarios. We propose a DRL framework that learns adaptable control policies for multi-rotor drones performing waypoint navigation in AM tasks. We compare Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) within a curriculum learning scheme designed to handle increasing complexity. Our experiments show TD3 consistently balances training stability, accuracy, and success, particularly when mass variability is introduced. These findings provide a scalable path toward robust, autonomous drone control in additive manufacturing.
Via

Feb 04, 2025
Abstract:This paper introduces a learning-based visual planner for agile drone flight in cluttered environments. The proposed planner generates collision-free waypoints in milliseconds, enabling drones to perform agile maneuvers in complex environments without building separate perception, mapping, and planning modules. Learning-based methods, such as behavior cloning (BC) and reinforcement learning (RL), demonstrate promising performance in visual navigation but still face inherent limitations. BC is susceptible to compounding errors due to limited expert imitation, while RL struggles with reward function design and sample inefficiency. To address these limitations, this paper proposes an inverse reinforcement learning (IRL)-based framework for high-speed visual navigation. By leveraging IRL, it is possible to reduce the number of interactions with simulation environments and improve capability to deal with high-dimensional spaces while preserving the robustness of RL policies. A motion primitive-based path planning algorithm collects an expert dataset with privileged map data from diverse environments, ensuring comprehensive scenario coverage. By leveraging both the acquired expert and learner dataset gathered from the agent's interactions with the simulation environments, a robust reward function and policy are learned across diverse states. While the proposed method is trained in a simulation environment only, it can be directly applied to real-world scenarios without additional training or tuning. The performance of the proposed method is validated in both simulation and real-world environments, including forests and various structures. The trained policy achieves an average speed of 7 m/s and a maximum speed of 8.8 m/s in real flight experiments. To the best of our knowledge, this is the first work to successfully apply an IRL framework for high-speed visual navigation of drones.
* 18 pages, 11 figures, 58 references, and appendix is included
Via

Jan 31, 2025
Abstract:The integration of human-intuitive interactions into autonomous systems has been limited. Traditional Natural Language Processing (NLP) systems struggle with context and intent understanding, severely restricting human-robot interaction. Recent advancements in Large Language Models (LLMs) have transformed this dynamic, allowing for intuitive and high-level communication through speech and text, and bridging the gap between human commands and robotic actions. Additionally, autonomous navigation has emerged as a central focus in robotics research, with artificial intelligence (AI) increasingly being leveraged to enhance these systems. However, existing AI-based navigation algorithms face significant challenges in latency-critical tasks where rapid decision-making is critical. Traditional frame-based vision systems, while effective for high-level decision-making, suffer from high energy consumption and latency, limiting their applicability in real-time scenarios. Neuromorphic vision systems, combining event-based cameras and spiking neural networks (SNNs), offer a promising alternative by enabling energy-efficient, low-latency navigation. Despite their potential, real-world implementations of these systems, particularly on physical platforms such as drones, remain scarce. In this work, we present Neuro-LIFT, a real-time neuromorphic navigation framework implemented on a Parrot Bebop2 quadrotor. Leveraging an LLM for natural language processing, Neuro-LIFT translates human speech into high-level planning commands which are then autonomously executed using event-based neuromorphic vision and physics-driven planning. Our framework demonstrates its capabilities in navigating in a dynamic environment, avoiding obstacles, and adapting to human instructions in real-time.
Via

Jan 17, 2025
Abstract:Unmanned Aerial Vehicles (UAVs), commonly known as Drones, are one of 21st century most transformative technologies. Emerging first for military use, advancements in materials, electronics, and software have catapulted drones into multipurpose tools for a wide range of industries. In this paper, we have covered the history, taxonomy, architecture, navigation systems and branched activities for the same. It explores important future trends like autonomous navigation, AI integration, and obstacle avoidance systems, emphasizing how they contribute to improving the efficiency and versatility of drones. It also looks at the major challenges like technical, environmental, economic, regulatory and ethical, that limit the actual take-up of drones, as well as trends that are likely to mitigate these obstacles in the future. This work offers a structured synthesis of existing studies and perspectives that enable insights about how drones will transform agriculture, logistics, healthcare, disaster management, and other areas, while also identifying new opportunities for innovation and development.
Via

Jan 08, 2025
Abstract:Objective: This paper describes the development of hybrid artificial intelligence strategies for drone navigation. Methods: The navigation module combines a deep learning model with a rule-based engine depending on the agent state. The deep learning model has been trained using reinforcement learning. The rule-based engine uses expert knowledge to deal with specific situations. The navigation module incorporates several strategies to explain the drone decision based on its observation space, and different mechanisms for including human decisions in the navigation process. Finally, this paper proposes an evaluation methodology based on defining several scenarios and analyzing the performance of the different strategies according to metrics adapted to each scenario. Results: Two main navigation problems have been studied. For the first scenario (reaching known targets), it has been possible to obtain a 90% task completion rate, reducing significantly the number of collisions thanks to the rule-based engine. For the second scenario, it has been possible to reduce 20% of the time required to locate all the targets using the reinforcement learning model. Conclusions: Reinforcement learning is a very good strategy to learn policies for drone navigation, but in critical situations, it is necessary to complement it with a rule-based module to increase task success rate.
* AI 5(4):2104-2126 2024
Via
